

CRISPR/Cas9 Gene Editing: From *Ex Vivo* to *In Vivo*

What is coming next for *in vivo* gene therapy?

Christopher Finch CRISPR Therapeutics

Conflict of Interest Disclosure

• Full-time employee and shareholder of CRISPR Therapeutics

Summary for Community

- CRISPR gene editing holds promise for the treatment of a variety of serious diseases
- At CRISPR Therapeutics, we have demonstrated the potential promise of CRISPR gene editing in sickle cell disease and beta thalassemia
- We can apply the learnings from this work to other areas, including HIV
- Preclinical proof-of-concept studies suggest that CRISPR gene editing could provide complete protection against HIV
- Advancing from ex vivo editing of blood stem cells to in vivo editing could enable CRISPR/Cas9-based therapies for HIV that can benefit patients worldwide

The CRISPR/Cas9 Revolution

A SPECIFIC, EFFICIENT and VERSATILE tool for editing genes

Correct or Insert

"If scientists can dream of a genetic manipulation, CRISPR can now make it happen"

Science

CRISPR Therapeutics Highlights

Leading gene editing company focused on translating revolutionary CRISPR/Cas9 technology into transformative therapies

Advancing CRISPR in the clinic with CTX001^m in β -thalassemia and sickle cell disease

Next-generation immuno-oncology platform underlying wholly-owned, potentially best-in-class gene-edited allogeneic cell therapies CTX110[™], CTX120[™] and CTX130[™]

Enabling regenerative medicine 2.0 with CRISPR/Cas9-edited allogeneic stem cells

Advancing *in vivo* applications based on in-licensed technologies, platform improvement and strategic partnerships

CTX001[™]: *Ex Vivo* CRISPR/Cas9 Gene-Edited Therapy in SCD and TDT

Duration Vaso-Occlusive Crisis-Free After CTX001 in SCD

All patients have detectable haptoglobin and improved LDH, indicating no evidence of hemolysis

Data disclosed December 5, 2020

Application in HIV: *Ex Vivo* **Proof-of-Concept in Mice**

All 8 control mice infected by CCR5-tropic HIV

Mouse model:

Control (no editing)CCR5 edited

All 5 CCR5-edited mice completely resistant to two HIV infection challenges at escalating doses

Research conducted in collaboration with

From Ex Vivo to In Vivo

CRISPR Therapeutics Receives Grant to Advance In Vivo CRISPR/Cas9 Gene Editing Therapies for HIV

-Funding from the Bill & Melinda Gates Foundation will support research to enable CRISPR/Cas9-based therapies for HIV that can benefit patients worldwide-

IAS 2021 18 – 21 July

Closing Thoughts

- CRISPR gene editing holds promise for the treatment of a variety of serious diseases
- At CRISPR Therapeutics, we have demonstrated the potential promise of CRISPR gene editing in sickle cell disease and beta thalassemia
- We can apply the learnings from this work to other areas, including HIV
- Preclinical proof-of-concept studies suggest that CRISPR gene editing could provide complete protection against HIV
- Advancing from ex vivo editing of blood stem cells to in vivo editing could enable CRISPR/Cas9-based therapies for HIV that can benefit patients worldwide